Development of a Sulfonamide ELISA and Its Confirmation with LC-MS/MS Method

Weilin L. Shelver,^a and Fernando M. Rubio^b

^aUSDA-ARS, Biosciences Research Laboratory, PO Box 5674, Fargo, ND, USA ^bAbraxis, LLC 54 Steamwhistle Drive, Warminster, PA, USA

INTRODUCTION

- Sulfonamides are common chemotherapeutic agents used in veterinary and human medicine to treat bacterial and protozoa infections as well as used at subtherapeutic concentrations to promote animal growth.
- Because of their widespread usage, low soil sorption, and slow microbial and chemical degradation, sulfonamides are some of the most prevalent pharmaceuticals found in waterways.
- In this study, we utilize the sulfonamide enzyme immunoassay to measure sulfonamide levels in water samples obtained from surface water and wastewater treatment plants.
- The enzyme immunoassay results were confirmed with results obtained from q-TOF-LC-MS/MS.

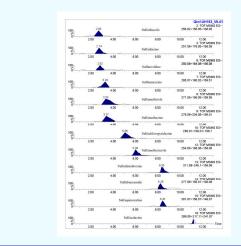
METHODS

ELISA Procedure

- · Direct competitive format using 96 well ELISA plates.
- Standard curve: 0, 0.025, 0.05, 0.1, 0.25, and 0.1 ppb.
- Filtered water from different sources was assayed directly.
- Dilute sample: (2-20x) when needed.

Sample collection

Samples from two different wastewater treatment plants (using an activated sludge or a trickling system) and river water were collected, centrifuged, and filtered.


Sample cleanup for LC-MS/MS

Oasis MCX solid phase cartridges were used (20 mL of wastewater; 100 mL of river water), eluted with 2.5% ammonium/MeOH, recovery checks were done at 10 ng or 100 ng in 100 mL H_2O .

LC-MS/MS parameter

HPLC Column:	Waters Atlantis dC18 2.1 x 100 mm, 3 µm	MS/MS Instrument:	Waters Q-Tof API-US
Detector:	Waters PDA 2996	Ionization	ES+
		Scan type	MRM
		Software	UH-152 MassLynx 4.1

Figure 1. LC-MS/MS quantitation (1 precursor ion and 2 product ions) corresponding to sulfonamides mixture (100 pg injected, 13 compounds showing here).

ACKNOWLEDGMENTS

The authors wish to acknowledge Amy McGarvey for technical assistance; Grant Harrington for LC-MS/MS analysis

RESULTS AND DISCUSSION

The ELISA gave good recoveries of sulfamethoxazole from spiked water samples and showed a relatively small variance (Table 1).

oiked water.				
Spiked (ppb)	n	Found (ppt)	% recovery	% CV
0.05	4	0.048 ± 0.010	96	20
0.10	4	0.092 ± 0.009	92	10
0.25	4	0.248 ± 0.015	99	6
0.50	4	0.500 ± 0.031	100	6.2

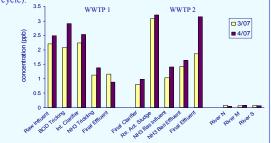

- The antibody is very sensitive and can detect sulfamethoxazole at 15 ppt (Table 2).
- A high degree of cross-reactivity toward sulfamethoxypyridazine, sulfachloropyridazine, and sulfadimethoxine has been observed (Table 2).
- Sulfadiazine, sulfacetamide, sulfamerazine, sulfaguanidine, sulfabenzamide, and sulfamethazine have 50% B/B₀ > 100 ppb Table 2).

Table 2. Sensitivity and cross-reactivity of sulfamethoxazole antibody.

Compound	95% B/B ₀ (ppb)	50% B/B ₀ (ppb)
Sulfamethoxazole	0.015	0.255
Sulfamethoxypyridazine	0.020	0.146
Sulfachloropyridazine	0.019	0.180
Sulfadimethoxine	0.016	0.42
Sulfamethizole	0.116	2.5
Sulfasalazine	0.450	7.9
Sulfapyridine	0.365	7.6
Sulfameter	0.068	12.0
Sulfaguinoxaline	0.130	26.5

- The sulfamethoxazole equivalence levels (ppb) obtained from ELISA are in general agreement between the two collection periods (Figure 2).
- Water treatment plants were not able to process sulfonamides efficiently (Figure 2).
- Surface water has low but measurable amounts of sulfonamides (Figure 2).

Figure 2. Sulfamethoxazole equivalency in wastewater treatment plants (WWTP) and river water (mean of 2 repeats in each survey cycle).

- Sulfonamide levels from ELISA results were comparable with those found in reports from Europe as well as USGS surveys (Rev. Environ. Contam. Toxicol. 187:67-101, 2006).
- LC-MS/MS results show recoveries for the sulfonamides; in general are > 50%.
- LC-MS/MS confirms the presence of sulfomethoxazole and sulfapyridine in wastewaters.
- ELISA can serve as a cost-effective, portable, and high throughput analytical method for sulfonamide analysis. LC-MS/MS will provide detailed composition of sulfonamides in water.